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This study evaluated the impact of direct seeding mulch-based cropping (DMC), as an alternative to
conventional tilling (CT), on a functional community involved in N cycling and emission of greenhouse
gas nitrous oxide (N2O). The study was carried out for annual soybean/rice crop rotation in the Highlands
of Madagascar. The differences between the two soil management strategies (direct seeding with
mulched crop residues versus tillage without incorporation of crop residues) were studied along
a fertilization gradient (no fertilizer, organic fertilizer, organic plus mineral fertilizers). The activity and
size of the denitrifier community were determined by denitrification enzyme activity assays and by real-
time PCR quantification of the denitrification genes. Denitrification activity and total C and N content in
the soil were significantly increased by DMC both years, whereas the fertilization regime and sampling
year (crop and mulch types, climatic conditions) had very little effect. Similar results were also observed
for denitrification gene densities. Denitrification enzyme activity was more closely correlated with C
content than with N content in the soil and denitrification gene densities. Principal component analysis
confirmed that soil management had the strongest impact on the soil denitrifier community and total C
and N content for both years and further indicated that changes in microbial and chemical soil
parameters induced by the use of fertilizer were favored in DMC plots. Overall, the alternative DMC
system had a significant positive effect on denitrifier densities and potential activities, which was not
altered by crop rotation and the level of fertilization. These data also suggest that in these clayey soils, the
DMC system simultaneously increased the size of the soil N pool and accelerated the N cycle, by stim-
ulating the denitrifier community. Complementary investigations should further determine in greater
detail the influence of DMC on in situ N-fluxes caused by denitrification.

� 2009 Published by Elsevier Ltd.
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C1. Introduction

Direct seeding mulch-based cropping (DMC) is a conservation
agriculture technique devoted to establishing agricultural sustain-
ability to ensure the perennial productivity of the soil through
a reduction in soil erosion and mineral fertilizer inputs and an
increase in soil nutrients (Smart and Bradford, 1999). DMC is being
increasingly adopted worldwide (about 90 million hectares,
Derpsch, 2003), especially in tropical and semi-arid tropical
x: þ33 4 99 61 21 19.
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agroecosystems, to cope with soil degradation induced by combi-
nations of arbitrary agricultural practices (e.g. no intercropping,
non-optimal rotation, systematic intensive cultivation) and adverse
climatic conditions. A large body of literature has reported that
alternative practices can favor cascades of beneficial changes to
chemical, structural and biological soil properties. Soil structure is
an important regulator in soil functioning that can be improved in
DMC managed fields through increased aggregation (Paustian et al.,
2000) often associated with increased organic matter content
(Doran, 1980) and soil moisture (Steiner, 1989). DMC management
has been reported as increasing the diversity and abundance of
faunal communities (Brévault et al., 2007; Blanchart et al., 2007), as
well as several other microbial characteristics (Govaerts et al., 2007;
-based cropping increases both the activity and the abundance of
09), doi:10.1016/j.soilbio.2009.05.015
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Cookson et al., 2008). For instance, increased microbial biomass and
various enzyme activities (e.g. b-glucosidase, phosphatase, urease)
have often been reported as being enhanced in no-till soils, espe-
cially in the upper surface soil layer and in fine textured soils (Doran,
1980; Bergstrom et al., 1998; Rabary et al., 2008).

While conservation agricultural practices are globally beneficial
to soil quality, reduced tillage and residue conservation may trigger
negative environmental side effects, such as increased N2O emis-
sions (Baggs et al., 2003; Rochette, 2008). Reduced availability of
oxygen and air space in DMC soils, together with the decomposition
of mulched crop residues in the superficial soil layers, are likely to
favor anaerobic processes such as denitrification (Baggs et al., 2003;
Sarkodie-Addo et al., 2003). Increased denitrification rates are
also likely to be mediated by an increased denitrifier biomass as
suggested by early studies documenting a significant increase in
denitrifier counts in no-till fields (Doran, 1980; Broder et al., 1984).
Against this background, the denitrification rates in such systems are
worth attention since this microbial process can represent a signifi-
cant source of N2O (Mosier et al., 1998) contributing to global
warming and destruction of the ozone layer (Tabazadeh et al., 2000).

Although a large body of literature describes the significant
effects of tillage intensity, fertilizer types or loading rates on
potential denitrification activity (review in Philippot et al., 2007) or
in situ losses through N2O or N2 releases (Baggs et al., 2006; Liu
et al., 2007), few studies have analyzed the effects of agricultural
practices on both denitrification activity and size of the denitrifier
community. However, measuring the size and activity of denitrifier
community and analyzing the relationship between them are of
great interest as the regulation of biogeochemical cycles by the size
of the microbial community is still in dispute (Coleman and
Whitman, 2005; Philippot and Hallin, 2005; Röling, 2007).

This study was based on the hypothesis that the size and activity
of the denitrifier community would be increased under DMC
management and that combined mineral and organic fertilizers
would strengthen this effect. This hypothesis was studied in the
Highlands of Madagascar where DMC systems were initially imple-
mented to deal with extensive soil erosion (Rabary et al., 2008). The
study was carried out in an agronomic field trial set up eight years
ago to study the long-term effects of DMC management on soil
functioning. The impact of DMC was evaluated by comparison with
tilled plots in two consecutive years, for soybean/rice crop rotation,
along a fertilization gradient including mineral and manure inputs.
The activity and size of the denitrifier community were determined
by monitoring denitrification enzyme activity and by real-time PCR
quantification of the denitrification genes, respectively.

2. Materials and methods

2.1. Field experimental design

The experimental station was located near Antsirabe, in Bema-
soandro (19�460S, 47�060E), Madagascar. This area has a tropical
altitude climate, with around 10–20 days of frost annually (Olde-
man, 1990) and a mean annual temperature of 17 �C. The site was
1600 m above sea level with an average rainfall of 1665 and
1203 mm during the 2004/2005 and 2005/2006 seasons, respec-
tively. Rainfall during the rainy season was particularly low in 2006
(223 mm through January and February compared with an average
of 556 mm for the same period in the previous 5 years). This soil is
andic Dystrustept (Soil Survey Staff, 2003). In 2003 the main
characteristics of the 0–25 cm soil layer in a soybean/rice rotation
under DMC systems were: pH(water) 5.1, clay 79%, fine silt 10%,
coarse silt 2%, fine sand 4%, coarse sand 5%, carbon 2.1%, nitrogen
0.16%, and CEC 17 cmol kg�1 (Razafimbelo, 2005). This field
experiment was set up in 1997 and consisted of two soil
Please cite this article in press as: Baudoin et al., Direct seeding mulch
denitrifier communities in a tropical soil, Soil Biology & Biochemistry (20
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management strategies (conventional tillage (CT) without crop
residue conservation and direct seeding (DMC) with mulched crop
residue conservation) combined with three fertilization regimes:
F0-no fertilizer, F1-organic fertilizer (5 t zebu manure ha�1 y�1),
F2-organic and mineral fertilizers (5 t zebu manure ha�1 y�1,
70 kg N, 30 kg P and 40 kg K ha�1), which resulted in a total of six
different treatments. Manure was applied at the beginning of
December while seeding, and mineral fertilizers were usually
spread a couple of weeks later. Plots (13.5 m2) were completely
randomized with three plots for each combination of treatment.
This study focused on a soybean (Glycine maxima L.)/rice (Oryza
sativa L.) annual rotation using rainwater only.

The soil was sampled in two consecutive years during the rainy
season on January 24 for the soybean crop (2005) and February 13
for the rice crop (2006) to characterize the denitrifier communities
during the period most favorable to denitrification (i.e. high soil
moisture, recent fertilizer inputs, plant growth) and to take account
of possible seasonal and crop type effects (e.g. residue quality,
quantity and quality of root exudates). Soil cores were taken along
three parallel lines located between rows (40 cm wide for soybean
and 30 cm wide for rice). No samples were taken from the soil
between the first two rows of crops on either side of each plot to
avoid possible edge effects. For each sampling line, five elementary
soil cores (5 cm depth, 5 cm diameter) were collected at three
separate locations along the line and mixed to give a total of 3
composite samples per plot (54 composite soil samples each year).
Soil samples were immediately air-dried, sieved at 2 mm and stored
at room temperature.

2.2. Chemical analyses

The total soil C and N contents were determined by dry
combustion using a CHN analyzer (Thermo-Finnigan EA 1112NC
Soil Analyzer). Measurements of nitrate-ammonium soil contents
were performed by ISO 9001 LAMA Laboratory (Dakar, US Imago,
IRD), but only on 2005 samples.

2.3. Activity measurements

Denitrification enzyme activity (DEA) was measured according
to the method described by Smith and Tiedje (1979). 20 g (dry
weight) sub-sets of soil samples were made anoxic by flushing the
flask headspace with helium. 2 mg C g�1 dry soil (added as a 50/
50 w/w glucose and glutamic acid) and 0.2 mg N g�1 soil (added as
KNO3) were added to each sample. The flask contents were
incubated with 10% (v/v) acetylene to allow the accumulation of
denitrified nitrogen as N2O. DEA was calculated as the rate of N
accumulated as N2O in the headspace in the presence of acetylene
between 2 and 6 h in the dark at 100% water holding capacity and at
25 �C, and analyzed using a gas chromatograph (Varian Star 3900,
Varian, Walnut Creek, CA, USA). The same protocol was used to
quantify potential N2O emissions but without acetylene to deter-
mine the proportion of N denitrified as N2O during the assay.

2.4. DNA extraction

DNA was extracted from 0.25 to 1 g of composite soil samples
with the Ultra Clean Soil DNA kit according to the manufacturer’s
instructions (Ozyme, Mo Bio, France). DNA extracts were quantified
by spectrophotometry at 260 nm using a BioPhotometer (Eppen-
dorf, Hamburg, Germany). For each plot, three independent soil
DNA extractions were performed, corresponding to the three
sampling lines per plot, giving a total of 54 DNA extracts, used as
PCR templates, for each year.
-based cropping increases both the activity and the abundance of
09), doi:10.1016/j.soilbio.2009.05.015
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Fig. 1. Denitrification enzyme activity (DEA) (mean and standard deviation, n ¼ 9)
measured in the presence of acetylene with field samples collected in two consecutive
cropping seasons (soybean in 2005 and rice in 2006, respectively). CT: conventional
tillage, DMC: direct seeding mulch-based cropping system, F0: no fertilizer, F1:
manure, F2: manure þ mineral fertilizer. Different capital letters below columns
indicate significant differences between sampling years (P < 0.05). Different lowercase
letters on top of columns indicate significant differences between fertilization/culti-
vation technique modalities for a given year.
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measured with field soil samples collected in two consecutive years (2005: soybean
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indicate significant differences between fertilization/cultivation technique modalities
for a given gene.
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2.5. Quantification of the denitrifier community size

The size of the denitrifier community was estimated by quan-
titative PCR (qPCR) of the genes encoding the catalytic subunit of
the key enzymes of the denitrification pathway. Fragments of the
nirK, nirS and nosZ genes encoding the copper and cd1 nitrite
reductases and the nitrous oxide reductase, respectively, were
amplified in a 20 ml reaction volume containing SYBR Green PCR
Master Mix (Absolute QPCR SYBR Green Rox ABgene, France), 1 mM
of each primer, 100 ng of T4 gene 32 (QBiogene, France) and 6.5 ng
of template DNA. The primers and PCR conditions are described in
López-Gutiérrez et al. (2004) for 16S rDNA, Henry et al. (2004) for
nirK, Kandeler et al. (2006) for nirS and Henry et al. (2006) for nosZ.
Thermal cycling, fluorescence measurements and data analysis
were carried out using an ABI Prism� 7900HT sequence detection
system according to the manufacturer’s instructions. Two or three
no-template controls were run for each quantitative PCR assay. All
assays were run using genomic DNA from either Bradyrhizobium
japonicum USDA110, Pseudomonas aeruginosa PAO1, Agrobacterium
tumefaciens C58 or Sinorhizobium meliloti 1021, containing known
copy numbers of targeted genes as external standards (Henry et al.,
2006). The potential presence of PCR inhibitors in soil DNA extracts
was tested by running a real-time PCR assay on serial dilution of soil
DNA extracts. No inhibition was detected in any case. To eliminate
U
NTable 1

Influence of cultivation technique and fertilization on total C and N, NH4
þ and NO3

� conte

Conventional tillage

F0a F1a

Carbon (%) soybean (2005) 2.3 (0.3) a 2.4 (0.2) ab
rice (2006) 2.5 (0.3) a 2.7 (0.2) a

Nitrogen (%) soybean (2005) 0.16 (0.02) a 0.17 (0.02) ab
rice (2006) 0.18 (0.03) a 0.20 (0.02) a

Ammoniumb soybean (2005) 6.2 (2.0) a 8.5 (2.4) a
Nitrateb soybean (2005) 6.8 (1.0) b 4.2 (1.0) a

Numbers represent means (n ¼ 9) followed by their standard deviations in parenthesis. D
treatments for a given crop.

a Fertilization levels: F0 no fertilizer, F1 manure, F2 manure þ mineral fertilizer.
b Expressed in mg NH4

þ/NO3
� – N g�1 soil.

Please cite this article in press as: Baudoin et al., Direct seeding mulch
denitrifier communities in a tropical soil, Soil Biology & Biochemistry (20
bias related to the DNA extraction efficiency, gene copy numbers
were calculated both by nanogram of DNA and gram of dry soil.

2.6. Statistics

The results were analyzed using Fisher’s LSD test with XLSTAT
software (2007.8.03 version, Addinsoft, Paris, France) on raw data
nt in the soil.

Direct seeding mulch-based system

F2a F0 F1 F2

2.6 (0.3) b 3.5 (0.3) c 3.7 (0.4) cd 3.9 (0.5) d
2.9 (0.2) b 3.5 (0.3) c 3.9 (0.3) d 4.5 (0.5) e

0.19 (0.03) b 0.25 (0.03) c 0.25 (0.03) c 0.25 (0.05) c
0.23 (0.02) b 0.28 (0.03) c 0.31 (0.03) c 0.37 (0.05) d
15.2 (2.7) b 14.2 (2.5) b 13.1 (2.6) b 15.3 (3.4)b

4.0 (1.4) a 9.9 (1.9) c 6.3 (2.5) b 5.2 (3.0) ab

ifferent letters within a row indicate significant differences (P < 0.05) between all six

-based cropping increases both the activity and the abundance of
09), doi:10.1016/j.soilbio.2009.05.015
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or log-transformed data for total soil C and N content. Principal
component analyses (PCA) were done by using normalized data
with ADE4 software (Thioulouse et al., 1997).

3. Results and discussion

This study set out to characterize the impact of zero tillage and
residue conservation on the size and activity of the denitrifier
community. DMC management significantly stimulated denitrifi-
cation enzyme activity with respect to conventional tillage (CT)
(Fig. 1). Average DEA values for soil collected from tilled plots
ranged from 17 to 26 ng N2O–N g�1 dry soil h�1 for both years and
across the whole fertilization range, while significantly higher rates
of 44–60 ng N2O–N g�1 dry soil h�1 were observed for DMC (Fig. 1).
Tillage has been reported either to stimulate (Calderón et al., 2001)
or decrease denitrification (Liu et al., 2006, 2007). The absence of
a clear effect of tillage on denitrification can be attributed to the
association of tillage with other agricultural practices that can also
potentially affect denitrifying communities. Moreover, the effect of
tillage depends on the timing, frequency and depth which deter-
mine the extent of aggregate disruption, organic matter protection
and dissolved organic matter availability, which in turn affect soil
microbial functioning (Cookson et al., 2008). Total C and N, together
with NH4

þ and NO3
� concentrations, also increased with the DMC

(Table 1). Previous studies have reported that, in no-till systems,
part of the soil organic matter can be physically protected by
inclusion in stable aggregates (Six et al., 2000; Oorts et al., 2007).
However, this study showed that DEA was significantly correlated
with soil C and N contents in both years (R2 from 0.53 to 0.83 for C
and from 0.53 to 0.59 for N, P< 0.001). As already reported (Burford
and Bremner, 1975), soil C content appears to be a good predictor of
DEA across very different soil types.

Denitrifying enzyme activity did not depend on the sampling
year (i.e. mulch and crop types, climatic conditions) or fertilization
rate (Fig. 1). Organic matter and/or mineral N fertilizers inputs have
usually been reported to stimulate denitrification (Mulvaney et al.,
1997; review in Philippot et al., 2007), especially under direct
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Fig. 3. Linear regressions established between (A) nirK or nosZ gene densities and soil C
densities, collected under soybean (black diamonds) and rice crops (grey circles) on the ba
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seeding (Baggs et al., 2003; Liu et al., 2006, 2007) and it is possible
that there may have been a transient fertilizer effect before the
samples were taken. No significant potential reduction of N2O into
N2 was noticed in the absence of acetylene for any of the combi-
nations of treatment (data not shown), suggesting that N2O is
the end product of denitrification in the soil studied. Incomplete
denitrification processes have been reported in agricultural soils
elsewhere (Hénault et al., 2001). However since our results are
based on only two sampling dates, a thorough investigation of
in situ N2O emissions is necessary before concluding that DMC
also increased emissions of N2O from the field. A recent study has
shown low N2O fluxes for the whole growing season in no-till plots
in the same area (Chapuis-Lardy et al., 2009).

For both sampling dates, the number of 16S rRNA copies per
nanogram of soil DNA ranged from 2.32 � 102 to 4.76 � 105 (Fig. 2),
which corresponded to 8.12 � 105 and 6.75 � 109 gene copies per
gram of dry soil (data not shown). Lower values were observed for
nirK and nosZ gene abundances, with values ranging from 1.16� 102

to 3.77 � 104 copies and from 1.31 �103 to 2.86 � 103 copies per ng
DNA, respectively (from 3.44�105 to 4.79�108 and from 2.47�103

to 5.16�107 copies per gram dry soil, respectively). In this study, the
nirS gene density was below the detection limit as for the study by
Dandie et al. (2008). The density of nirK and nosZ denitrification
genes estimated in this study varied within the ranges previously
reported: nirK and nosZ densities of 2�106 to 2�108 and 3�106 to
8� 107 copies per gram of soil were reported for various arable soils
(Henry et al., 2006; Dandie et al., 2008; Hallin et al., 2009). The
effect of DMC on denitrification gene abundances (Fig. 2) was
similar to that on denitrification enzyme activity (Fig. 1) with
significantly higher denitrification gene copy numbers in DMC than
in conventional tillage plots, with the exception of the plots
receiving the highest fertilizer inputs. Both nirK and nosZ gene
densities were significantly correlated with N content (data not
shown) and more strongly with C content (Fig. 3A). This confirmed
the heterotrophic nature of the denitrifying community (Tiedje,
1988), which was stimulated by the increased soil organic matter
content (DMC) and by manure inputs. In the field studied, the
B
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Table 2
Influence of cultivation technique and fertilization on the ratios of nirK and nosZ genes to 16S rDNA gene (nirK/16S, nosZ/16S) and ratio of nosZ gene to nirK gene (nosZ/nirK).

Conventional tillage Direct seeding mulch-based system

F0a F1a F2a F0 F1 F2

nirK/16S soybean (2005) 5.23 (3.47) a 6.10 (2.72) ab 8.67 (3.65) bc 9.50 (3.44) c 8.83 (2.69) bc 9.36 (2.06) c
rice (2006) 3.23 (2.25) a 4.06 (2.32) ab 6.99 (1.09) c 5.79 (1.64) bc 6.38 (1.35) c 7.48 (3.41) c

nosZ/16S soybean (2005) 0.18 (0.08) a 0.14 (0.06) a 0.39 (0.34) b 0.28 (0.29) ab 0.28 (0.20) ab 0.27 (0.08) ab
rice (2006) 0.21 (0.18) a 0.42 (0.40) bc 0.20 (0.06) a 0.27 (0.06) ab 0.48 (0.18) c 0.42 (0.16) bc

nosZ/nirK soybean (2005) 3.10 (2.22) ab 2.70 (1.63) ab 4.35 (2.98) b 2.61 (1.19) a 2.95 (1.41) ab 2.85 (0.49) ab
rice (2006) 2.35 (1.91) a 5.96 (2.93) bc 2.99 (0.97) ab 4.77 (0.93) abc 7.54 (2.37) c 7.83 (6.93) c

Numbers represent means (n ¼ 9) followed by their standard deviations in parenthesis. Different letters within a row indicate significant differences (P < 0.05) between all six
treatments for a given crop.

a Fertilization levels: F0 no fertilizer, F1 manure, F2 manure þ mineral fertilizer.
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proportion of nirK and nosZ genes to 16S rRNA gene ranged from 3.2
to 9.5% and from 0.14 to 0.48% respectively (Table 2). These results
are in agreement with culture-based studies that have found that
the proportion of denitrifiers to total bacteria is less than 5% (Tiedje,
1988; Chèneby et al., 2000, 2004). In this study, nosZ gene abun-
dance was less than 5% of that of the nirK gene (Table 2). The higher
abundance of nirK genes compared to nosZ genes has already been
observed in a temperate agricultural soil (Henry et al., 2006), and
suggests that, in the fields studied, many of the denitrifiers may lack
the nosZ gene and, therefore, are genetically unable to reduce N2O
into N2. However, the nosZ primers used may not be as universal as
the nirK primers, which could account for the high nirK to nosZ gene
ratio reported here. On the other hand, the low proportion of nosZ
denitrifiers could explain the absence of a detectable potential
reduction of N2O in the DEA assay.

PCA of the chemical and microbial data, all expressed per gram of
soil, confirmed that soil management had a greater influence than
the fertilization regime. There was a significant segregation of the soil
management strategies along the first axis, explaining 76 and 71% of
the variance for soybean and rice crops, respectively (only shown for
the soybean crop in Fig. 4). PCA ordination of the variables indicated
that they were all associated with the first axis, showing that the soil
C and N content, gene densities and DEA were all stimulated by DMC
(Fig. 4). A higher variability in PCA scores was observed for DMC plots
which could reflect the higher structural heterogeneity of the soil
after several years of zero tillage. PCA also showed that there was
a weak effect between the F1 and F2 fertilization treatments but only
with DMC soil management, as indicated by a significant segregation
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Fig. 4. Principal component analysis and associated correlation circle carried out on the who
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tillage and direct seeding mulch-based cropping systems, respectively. White, grey and blac
manure þ mineral fertilizer, respectively).
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of points along the second axis explaining 17.4% of the total variance.
Linear regressions between DEA and denitrification gene densities
(Fig. 3B) were significant in all cases suggesting that potential deni-
trification activity is partly regulated by the size of the denitrifier
community (average R2 ¼ 0.33, P < 0.001). However, regression
coefficients and slopes were rather low indicating a limited predic-
tive value of such regressions. For instance, some soil samples having
up to two log differences in denitrifier density exhibited similar
denitrification levels. Such weak correlation between denitrifier
biomass and denitrification activity has already been reported
(Martin et al., 1988; Dandie et al., 2008). Several hypotheses can
explain the low correlation between size and activity observed in this
study. Firstly, the number of denitrification genes was quantified to
estimate the size of the community genetically capable of denitrify-
ing but this did not provide information on the size of the active
fraction of this community. Moreover, although nirS gene densities
were too low to be reliably estimated, it is possible that cytochrome
cd1 nitrite reductase activity significantly influenced the measured
potential denitrification activity. Another hypothesis is that agro-
nomic treatments may have modified the composition of the deni-
trifier community by selecting denitrifier populations with different
specific activities or having denitrification enzymes that were
susceptible to abiotic factors (Cavigelli and Robertson, 2000).
Chèneby et al. (2009) observed, at the same experimental site,
significant differences in the nitrate reducer community structure
between treatments. Such compositional shifts are likely to loosen
the link between denitrification activity and the size of the denitrifier
community.
N
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ding

le data set (total soil C and N contents, nirK–nosZ gene densities, denitrification enzyme
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4. Conclusions

This study showed that DMC systems may favor soil denitrifi-
cation potential with the size and potential activity of the denitrifier
community increased by direct seeding and crop residue retention
compared to conventional tillage. However, different levels of
fertilization had no significant impact on the denitrifier community
in the tropical clayey soil studied. These results suggest that the
tillage system (determining the soil physical status and residue
retention) modifies several soil properties, making it the dominant
driver of the denitrifier community over fertilization practices in
these arable soils. It also seems that even on such clayey soils, the
DMC system can simultaneously favor soil N content and N-cycling
microbial communities. However, data on in situ N-fluxes caused by
denitrification are needed to confirm the impact of DMC on nitrogen
loss. In addition, the lack of a clear-cut correlation between deni-
trification gene abundances and potential denitrifying activity
highlights the complexity of the mechanisms determining N-fluxes
by denitrification. Nevertheless, focusing on the active fraction of
the denitrifier community that contributes to the N2O and N2

emissions would help clarifying the role of denitrifier community
size and diversity in regulating N-fluxes by denitrification.
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López-Gutiérrez, J.C., Henry, S., Hallet, S., Martin-Laurent, F., Catroux, G.,
Philippot, L., 2004. Quantification of a novel group of nitrate-reducing bacteria
in the environment by real-time PCR. Journal of Microbiological Methods 57,
399–407.

Martin, K., Parsons, L.L., Murray, R.E., Smith, M.S., 1988. Dynamics of soil deni-
trifier populations: relationships between enzyme activity, most-probable-
number counts, and actual N gas loss. Applied & Environmental Microbiology
54, 2711–2716.

Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., van Cleemput, O., 1998.
Closing the global N2O budget: nitrous oxide emissions through the agricultural
nitrogen cycle. Nutrient Cycling in Agroecosystems 52, 225–248.

Mulvaney, R.L., Khan, S.A., Mulvaney, C.S., 1997. Nitrogen fertilizers promote deni-
trification. Biology & Fertility of Soils 24, 211–220.

Oldeman, L.R., 1990. An Agroclimatic Characterization of Madagascar. ISRIC,
Wageningen. Technical Paper 21.

Oorts, K., Bossuyt, H., Labreuche, J., Merckx, R., Nicolardot, B., 2007. Carbon and
nitrogen stocks in relation to organic matter fractions, aggregation and pore
size distribution in no-tillage and conventional tillage in northern France.
European Journal of Soil Science 58, 248–259.

Paustian, K., Six, J., Elliot, E.T., Hunt, H.W., 2000. Management options for reducing
CO2 emissions from agricultural soils. Biogeochemistry 48, 147–163.

Philippot, L., Hallin, S., 2005. Finding the missing link between diversity and activity
using denitrifying bacteria as a model functional community. Current Opinion
in Microbiology 8, 234–239.

Philippot, L., Hallin, S., Schloter, M., 2007. Ecology of denitrifying prokaryotes in
agricultural soils. Advances in Agronomy 96, 249–305.

Rabary, B., Sall, S., Letourmy, P., Husson, O., Ralambofetra, E., Moussa, N., Chotte, J.-L.,
2008. Effects of living mulches or residue amendments on soil microbial
properties in direct seeded cropping systems of Madagascar. Applied Soil
Ecology 39, 236–243.

Razafimbelo, T.M., 2005. Stockage et protection du carbone dans un sol ferrallitique
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